Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The power-law fluid flow in tree-like self-similar branching networks is prevalent throughout the natural world and also finds numerous applications in technology such as oil recovery and microfluidic devices. We investigate analysis of optimal power-law fluid flow conditions and the optimal structures within tree-like branching networks, focusing on maximizing flow conductance under the constraint of the network tube’s volume and the surface area. The study considered fully developed laminar power-law fluid flow regimes without considering any losses in the network system. A key observation was the sensitivity of the dimensionless effective flow conductance to the network’s geometrical parameters. We found that the maximum flow conductance occurs when a dimensionless radius ratio β∗ satisfies the equation β∗=N−1/3 and β∗=N−(n+1)/(3n+2) under constrained tube-volume and surface-area, respectively. Here, N represents the bifurcation number of branches splitting at each junction, and n is the fluid power-law index. We further find that this optimal condition occurs when pressure drops are equipartition across each branching level. We validated our results with various experimental results and theories under limiting conditions. Further, Hess–Murray’s law is justified and extended for the shear-thinning and shear-thickening fluid flows for an arbitrary number of branches N. Further, in this study, we also derive the relationships between the geometrical and flow characteristics of the parent and daughter tubes as well as the generalized scaling laws at the optimal conditions for the other essential parameters such as tube-wall stresses, length ratios, mean velocities, tube-volume, and surface-area of the tube distributing within the networks. We find that the fluid power-law index n does not influence the constrained tube-volume scaling at the optimal conditions; however, the scaling laws vary with n under the constrained tube’s surface area. These findings offer valuable design principles for developing efficient transport and flow systems.
The power-law fluid flow in tree-like self-similar branching networks is prevalent throughout the natural world and also finds numerous applications in technology such as oil recovery and microfluidic devices. We investigate analysis of optimal power-law fluid flow conditions and the optimal structures within tree-like branching networks, focusing on maximizing flow conductance under the constraint of the network tube’s volume and the surface area. The study considered fully developed laminar power-law fluid flow regimes without considering any losses in the network system. A key observation was the sensitivity of the dimensionless effective flow conductance to the network’s geometrical parameters. We found that the maximum flow conductance occurs when a dimensionless radius ratio β∗ satisfies the equation β∗=N−1/3 and β∗=N−(n+1)/(3n+2) under constrained tube-volume and surface-area, respectively. Here, N represents the bifurcation number of branches splitting at each junction, and n is the fluid power-law index. We further find that this optimal condition occurs when pressure drops are equipartition across each branching level. We validated our results with various experimental results and theories under limiting conditions. Further, Hess–Murray’s law is justified and extended for the shear-thinning and shear-thickening fluid flows for an arbitrary number of branches N. Further, in this study, we also derive the relationships between the geometrical and flow characteristics of the parent and daughter tubes as well as the generalized scaling laws at the optimal conditions for the other essential parameters such as tube-wall stresses, length ratios, mean velocities, tube-volume, and surface-area of the tube distributing within the networks. We find that the fluid power-law index n does not influence the constrained tube-volume scaling at the optimal conditions; however, the scaling laws vary with n under the constrained tube’s surface area. These findings offer valuable design principles for developing efficient transport and flow systems.
Flows in dendritic–fractal networks have garnered extensive research attention, but most studies assume a constant tube or channel cross section. In many applications, the cross section of the tube or channel changes as the flow progresses through it, such as the blood flow through the arterial system, which is a prime example of a deformable or non-uniform tree-like network. Heating, ventilation, and air conditioning ductwork also exemplify a tree-like network with varying cross sections. This research investigates power-law fluid flows in the converging–diverging tubes and rectangular channels, prevalent in engineered microfluidic devices, many industrial processes, and heat transfer applications. Power-law fluid flows through linear, parabolic, hyperbolic, hyperbolic cosine, and sinusoidal converging–diverging dendritic networks of tubes and rectangular channels are studied. The flow is assumed to be steady, incompressible, two-dimensional planar, and axisymmetric laminar flow without considering network losses. A theoretical model has been derived to evaluate the flow conductance under network volume and surface-area constraints. The flow conductance is highly sensitive to network geometry. The effective conductance of all networks increases with increasing daughter-to-parent radius ratio before eventually declining. The maximum conductance occurs when a specific radius or channel-height daughter–parent ratio β* is achieved. This value depends on the constraint and vessel geometry, such as tubes or rectangular channels. The optimal flow conditions for maximum conductance in a constrained tube volume network, βmax*=βmin*=N−1/3, while for a constrained tube's surface-area network, βmax*=βmin*=N−(n+1)/(3n+2). This scaling applies to all converging–diverging tube network profiles. Here, βmax*, βmin* are the radius ratios of the daughter–parent pair at the maximum divergent or minimum convergent part of the vessel. N represents the number of branches splitting at each junction, and n is the power-law index of the fluid. Furthermore, the optimal flow scaling for the height ratio in the rectangular channel, βmax*=βmin*=N−1/2α−1/2 for constrained channel volume and βmax*=βmin*=N−1/2α−n/(2n+2) for constrained surface area for all converging–diverging channel networks, respectively, where α is the channel-width ratio between parent and daughter branches. Additionally, at optimal conditions in both the channels and tube network, pressure drops are equally partitioned across each branching level. The results in this work are validated with experiments and existing theories for limiting conditions. This research expands existing design principles for efficient flow systems, previously in the literature developed for uniform vessels, to encompass non-uniform converging–diverging vessels. Additionally, it provides a valuable framework for studying non-Newtonian flows within complex, non-uniform tree-like networks.
Cavitation is a transient, highly complex phenomenon found in numerous applications and can have a significant impact on the characteristics as well as the performance of the hydrofoils. This study compares the evolution of transient cavitating flow over a NACA4412(base) (NACA stands for National Advisory Committee for Aeronautics) cambered hydrofoil and over the same hydrofoil modified with a pimple and a finite (circular) trailing edge. The assessment covers sheet, cloud, and supercavitation regimes at an 8° angle of attack and the Reynolds number of 1×106, with cavitation numbers ranging from 0.9 to 0.2. The study aims to comprehensively understand the role of the rectangular pimple in controlling cavitation and its impact on hydrodynamic performance across these regimes. Numerical simulations were performed using a realizable model and the Zwart–Gerber–Belamri (ZGB) cavitation model to resolve turbulence and cavitation effects. The accuracy of the present numerical predictions has been verified both quantitatively and qualitatively with available experimental results. The present analysis includes the time evolution of cavities, temporal variation in total cavity volume, time-averaged total cavity volume, distributions of vapor volume fractions along the chord length, and their hydrodynamic performance parameters. Results demonstrate that rectangular pimples have significant impacts in the different cavitation regimes. In the sheet cavitation regime (σ=0.9), the NACA4412(pimpled) hydrofoil exhibits minimal cavity length and transient volume changes as compared to the NACA4412(base) hydrofoil. In the cloud cavitation regimes (σ=0.5), cavity initiation occurs differently, starting from the pimpled location for the NACA4412(pimpled) hydrofoil, unlike the initiation just downstream of the nose in the case of base hydrofoil. In the supercavitation regimes (σ=0.2), the cavity length remains comparable, but the NACA4412(pimpled) hydrofoil exhibits larger cavity volume evolution in both cloud and supercavitation regimes (σ=0.5 and σ=0.2) after initial fluctuations. Furthermore, hydrodynamic performance for the NACA4412(pimpled) hydrofoil shows 41%, 36%, and 17% lower lift coefficients, and 46%, 27%, and 9% lower drag coefficients in sheet, cloud, and supercavitation, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.