Despite the extensive use of effective vaccines and antiviral drugs, chronic hepatitis B virus (HBV) infection continues to pose a serious threat to global public health. Therapies with novel mechanisms of action against HBV are being explored for achieving a functional cure. In this study, five murine models of HBV replication were used to investigate the inhibitory effect of RNA binding motif protein 24 (RBM24) on HBV replication. The findings revealed that RBM24 serves as a host restriction factor and suppresses HBV replication in vivo. The transient overexpression of RBM24 in hydrodynamics‐based mouse models of HBV replication driven by the CMV or HBV promoters suppressed HBV replication. Additionally, the ectopic expression of RBM24 decreased viral accumulation and the levels of HBV covalently closed circular DNA (cccDNA) in an rcccDNA mouse model. The liver‐directed transduction of adeno‐associated viruses (AAV)‐RBM24 mediated the stable hepatic expression of RBM24 in pAAV‐HBV1.2 and HBV/tg mouse models, and markedly reduced the levels of HBV cccDNA and other viral indicators. Altogether, these findings revealed that RBM24 inhibits the replication of HBV in vivo, and RBM24 may be a potential therapeutic target for combating HBV infections.