This study aims to evaluate the physicochemical properties of rubberwood sawdust (RWS) and sewage sludge (SS) for producing biofuel or liquid products via pyrolysis and co-pyrolysis. The chemical and thermal properties of both samples were observed to have superior bioenergy production capabilities. RWS and SS had significantly different physicochemical properties, such as particle-size distribution, bulk density, ultimate and proximate analysis, lignocellulose composition, thermal-degradation behaviour, and major and minor elements. The composition of extractives was found to only marginally affect the end product. Carbon and hydrogen content, the two main elements for biofuel enhancement, were found to correlate with the organic components of both RWS (48.49, 7.15 wt.%) and SS (32.29, 4.06 wt.%). SS had a higher elemental composition of iron, calcium, and potassium than RWS. Both samples had a higher heating value of 13.98 to 21.01 MJ/kg and a lower heating value of 11.65 to 17.66 MJ/kg, a lesser energy potential than that of fossil fuels. The findings from these blends are relatively moderate due to the related lignocellulosic potential composition. The novel contribution of this research was to optimize the use of local waste materials as a new raw material for biofuel production that could serve as a sustainable fuel source.