2021
DOI: 10.2298/csis200212005h
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced image preprocessing method for an autonomous vehicle agent system

Abstract: Excessive training time is a major issue face when training autonomous vehicle agents with neural networks by using images as input. This paper proposes a deep time-economical Q network (DQN) input image preprocessing method to train an autonomous vehicle agent in a virtual environment. The environmental information is extracted from the virtual environment. A top-view image of the entire environment is then redrawn according to the environmental information. During training of the DQN model,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 3 publications
0
0
0
Order By: Relevance