The Lunarminer framework explores the use of biomimetic swarm robotics, inspired by the division of labor in leafcutter ants and the synchronized flashing of fireflies, to enhance lunar water ice extraction. Simulations of water ice extraction within Shackleton Crater showed that the framework may improve task allocation, by reducing the extraction time by up to 40% and energy consumption by 31% in scenarios with high ore block quantities. This system, capable of producing up to 181 L of water per day from excavated regolith with a conversion efficiency of 0.8, may allow for supporting up to eighteen crew members. It has demonstrated robust fault tolerance and sustained operational efficiency, even for a 20% robot failure rate. The framework may help to address key challenges in lunar resource extraction, particularly in the permanently shadowed regions. To refine the proposed strategies, it is recommended that further studies be conducted on their large-scale applications in space mining operations at the Extraterrestrial Environmental Simulation (EXTERRES) laboratory at the University of Adelaide.