2021
DOI: 10.1016/j.jmapro.2021.05.058
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced interfacial bonding strength between metal and polymer via synergistic effects of particle anchoring and chemical bonding

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
8
0
1

Year Published

2022
2022
2025
2025

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 26 publications
(9 citation statements)
references
References 31 publications
0
8
0
1
Order By: Relevance
“…Statistically, the content of C in points 1–4 was higher while the content of Fe was lower than those in points 5–8. It is revealed that the thickness of residual EAA in different areas of Zone 2 was still different after the peeling test, resulting from the tortuous failure path . In consequence, the peeling test showed a fairly strong interfacial bonding (6.6 ± 0.2 N/cm, mentioned in Section ), which was higher than that of previous studies. , …”
Section: Resultsmentioning
confidence: 67%
See 2 more Smart Citations
“…Statistically, the content of C in points 1–4 was higher while the content of Fe was lower than those in points 5–8. It is revealed that the thickness of residual EAA in different areas of Zone 2 was still different after the peeling test, resulting from the tortuous failure path . In consequence, the peeling test showed a fairly strong interfacial bonding (6.6 ± 0.2 N/cm, mentioned in Section ), which was higher than that of previous studies. , …”
Section: Resultsmentioning
confidence: 67%
“…Interestingly, in contrast with the original surface of Cr-coated steel, carbon concentration of the fractured surface increased significantly, while oxygen and chromium concentrations decreased significantly, which can be explained by the lower oxygen concentration in the polymer than in metal oxides. 30,45 Meanwhile, it is remarkable that Fe was not detected on the fractured surface due to the existence of Cr(OH) 3 , Cr 2 O 3 , and EAA residues fully covering the top surface at a nanoscale thickness. In summary, the EAA residues remaining on the metal surface was controlled within the limit of XPS analysis depth so that XPS analysis can reach Cr in the meantime, indicating that the interface was successfully exposed for analysis at the fractured surface (Zone 2).…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Key words: Bi 2 Te 3 ; interface bonding strength; interface contact resistance; Ni barrier layer; micro thermoelectric device 伴随能源短缺及环境污染问题加剧, 清洁能源 材料及相应的能源转换技术成为世界范围的研究热 点 [1] 。热电材料能够实现热能与电能之间的直接转 换, 在废热回收利用、固态制冷、精确温控等领域 具有发展潜力 [2][3][4][5][6] 。热电器件具有众多优点, 如无传 动部件、无噪音、体积小、寿命长等 [7][8] 。 微型热电器件能够在受限空间内精确控制温度, 同时为微瓦级电子元件供电, 如 5G 光模块、 自供电 可穿戴设备、 物联网节点电源等 [9] , 在日新月异的物 联网发展中受到越来越广泛的关注 [10] 。在室温条件 下, Bi 2 Te 3 基化合物具有优异的热电性能, 是主要的 商用热电材料。由于 Bi 2 Te 3 基微型热电器件的尺寸 小, 因此, 界面结合强度及接触电阻对于器件力学 性能及开路电压、输出功率等热电性能的影响更加 显著 [11] 。 室温 Bi 2 Te 3 基热电器件通常采用 Ni 作为阻挡层, Cu 充当电极, 二者通过锡膏焊接而成 [12] 。在优化 Bi 2 Te 3 基热电材料与 Ni 阻挡层间界面状态方面, 研 究人员做了大量探索 [13] 。 Liu 等 [14] 采用摩尔分数 1% SbI 3 掺杂的 Bi 2 Te 2.7 Se 0.3 作为阻挡层, 在 500 ℃及真 空条件下通过热压法与 Bi 2 Te 2.7 Se 0.3 基体焊接, 最终 热电单元的接触电阻<1 μΩ·cm 2 , 同时结合强度约 为 16 MPa, 可满足微型制冷器件工业化生产的性能 需求。Weitzman 等 [15] 利用硝酸与氢氟酸的混合液 (V(HNO 3) :V(HF)=1 : 1)对 n 型 Bi 2 Te 3 基块体材料表 面腐蚀 135 s, 再与 Ni 防扩散层焊接后制备得到热 电单元, 结合强度为 9.7~12.2 MPa。上海热磁电子 有限公司陈良杰等 [16] 与广东先导稀贵金属材料有 限公司蔡新志等 [17] 对腐蚀配方进行改进(氢氟酸 5%~20%(体积分数)、 硝酸 20%~40%(体积分数)), 制 备的热电单元中 n 型 Bi 2 Te 3 基块体材料与 Ni 防扩散 层间的接触电阻约为 5 μΩ·cm 2 。 Tang 等 [18] 使用商业 电镀法制备了热电器件, 最大输出功率为 2.60 mW。 Gupta 等 [19][20] 使用氩离子轰击 n 型 Bi 2 Te 3 基块体材 料表面, 随后在新鲜表面磁控溅射 Ni 阻挡层, 制备 得到热电单元, 经过 100 ℃退火 2 h, 界面接触电阻 <10 -7 Ω·cm 2 。此外, Bi 2 Te 3 基薄膜材料同样有大量 优化接触电阻的报道 [21][22][23][24][25] 。对于微型热电器件, 降 低 n 型 Bi 2 Te 3 基块体材料与阻挡层间的界面接触电 阻,提高界面的结合强度,开发成本低、工艺简单 的热电单元制备技术具有重要意义。 本工作通过控制 n 型 Bi 2 Te 3 基热电材料薄片在 新配置的表面处理液 [26][27][28][29][30][31] 中的浸泡时间, 详细探 究化学镀 Ni 后的界面结构, 并揭示其对界面结合 强度及界面接触电阻的影响规律, 为优化 Bi 2 Te 3 基 微型热电器件的开路电压、 输出功率等热电性能提 供支撑。 [24,[33][34]…”
unclassified
“…The second strategy utilizes the laser melting technique. The high power density of a laser beam can induce site-specific bond-forming reactions between molten polymer and metal at a high speed (18)(19)(20). By incorporating rapid temperature feedback at the site of laser irradiation, we manage the thermostatic control during the continuous joining of bulk PTFE and steel (Fig.…”
mentioning
confidence: 99%