Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The threat situation due to cyber attacks in hospitals is emerging and patient life is at risk. One significant source of potential vulnerabilities is medical cyber-physical systems (MCPS). Detecting intrusions in this environment faces challenges different from other domains, mainly due to the heterogeneity of devices, the diversity of connectivity types, and the variety of terminology. To summarize existing results, we conducted a structured literature review (SLR) following the guidelines of Kitchenham et al. for SLRs in software engineering. We developed six research questions regarding detection approach, detection location, included features, adversarial focus, utilized datasets, and intrusion prevention. We identified that most researchers focused on an anomaly-based detection approach at the network layer. The primary focus was on the detection of malicious insiders. While several researchers used publicly available datasets for training and testing their algorithms, the lack of suitable datasets resulted in the development of testbeds consisting of various medical devices. Based on the results, we formulated five future research topics. First, the special conditions of hospital networks, the MCPS deployed within them, and the contrasts to other IT and OT environments should be examined. Thereupon, MCPS-specific datasets should be created that allow researchers to address the health domain's unique requirements and possibilities. At the same time, endeavors aimed at standardization in this area should be supported and expanded. Moreover, the use of medical context for attack detection should be further explored. Last but not least, efforts for MCPS-tailored intrusion prevention should be intensified. This way, the emerging threat landscape can be addressed, IT security in hospitals can be improved, and patient health can be protected.
The threat situation due to cyber attacks in hospitals is emerging and patient life is at risk. One significant source of potential vulnerabilities is medical cyber-physical systems (MCPS). Detecting intrusions in this environment faces challenges different from other domains, mainly due to the heterogeneity of devices, the diversity of connectivity types, and the variety of terminology. To summarize existing results, we conducted a structured literature review (SLR) following the guidelines of Kitchenham et al. for SLRs in software engineering. We developed six research questions regarding detection approach, detection location, included features, adversarial focus, utilized datasets, and intrusion prevention. We identified that most researchers focused on an anomaly-based detection approach at the network layer. The primary focus was on the detection of malicious insiders. While several researchers used publicly available datasets for training and testing their algorithms, the lack of suitable datasets resulted in the development of testbeds consisting of various medical devices. Based on the results, we formulated five future research topics. First, the special conditions of hospital networks, the MCPS deployed within them, and the contrasts to other IT and OT environments should be examined. Thereupon, MCPS-specific datasets should be created that allow researchers to address the health domain's unique requirements and possibilities. At the same time, endeavors aimed at standardization in this area should be supported and expanded. Moreover, the use of medical context for attack detection should be further explored. Last but not least, efforts for MCPS-tailored intrusion prevention should be intensified. This way, the emerging threat landscape can be addressed, IT security in hospitals can be improved, and patient health can be protected.
Protecting patient data and maintaining integrity in the healthcare system against cyber threats is crucial. Measures include data encryption for electronic health records, restricting access to sensitive data with multitier authentication, using firewalls and intrusion detection systems, and regularly updating software in medical devices. AI can enhance healthcare cybersecurity by detecting anomalies in the network, creating baseline behavior profiles for users to detect insider threats, using ML algorithms and deep learning for predictive analysis and vulnerability detection, and detecting phishing attempts to protect healthcare staff from social engineering attacks. The chapter focuses on creating a deep learning model for intrusion detection to preserve patient privacy and security by detecting anomalies in the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.