Activated peritoneal macrophages obtained from Listeria-immune mice were demonstrated to kill nonphagocytosable Candida albicans hyphae by contact-mediated mechanisms in a serum-free synthetic medium. The actual killing of hyphae was confirmed by a microculture technique utilizing the dimorphic nature of the fungus. The most efficient candidacidal activity was demonstrated by the macrophages obtained from mice first immunized with live Listeria monocytogenes and then elicited with heat-killed L. monocytogenes cells. Resident macrophages from control mice showed only low candidacidal activity against C. albicans hyphae and yeast cells. Direct physical contact appeared to be required for macrophages to efficiently kill oversized C. albicans hyphae. Efficient in vitro killing of hyphae also required relatively high effector/target cell ratios (50 or higher). The contact-mediated candidacidal activity of activated macrophages was not significantly abrogated by oxygen-radical scavengers, suggesting the involvement of oxygen-independent mechanisms. These results suggest that the enhanced nonspecffic immunity to candidiasis seen in Listeria-immune hosts can be attributed, at least in part, to activated fungicidal macrophages. The ability of macrophages to detect and destroy both yeast and hyphal C. albicans cells is clearly an important element of the host defense against candidiasis.