In this study, TiO2 nanorod arrays (TNR), Ag quantum dots (QDs) sensitized with TNR TiO2/Ag, bismuth oxyhalide (BiOI) nanosheets, and Ag QDs co‐modified with TNR and TiO2/BiOI/Ag (TBA) were prepared by a stepwise process. The morphological, structural, compositional, optical, photocatalytic (PC), and photoelectrochemical (PEC) properties of the samples were investigated. The TBA‐2 sample exhibited the highest photocurrent density (281.8 μA/cm2) and photodegradation efficiency (93.3%), with values 9.7 times and 2.25 times higher than those for TNR, respectively. The improvement in sample performance can be attributed to the formation of a heterojunction between BiOI and TiO2, thereby enhancing the absorption of visible light and improving the charge separation efficiency; Ag QDs limit interfacial electron‐hole pair recombination. The experimental results show that TBA can effectively promote light‐induced carrier transport and visible light absorption, while inhibiting the recombination rate of the electron‐hole pairs, PEC, and PC.