2017
DOI: 10.1007/978-3-319-53474-9_3
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced Over_Sampling Techniques for Imbalanced Big Data Set Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2017
2017
2022
2022

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 33 publications
0
3
0
1
Order By: Relevance
“…1 demonstrates the organization of work structure to apprise imbalanced Big Data sets [36]. The work involves the investigational analysis of over sampled data set to improve classification.…”
Section: Architecturementioning
confidence: 99%
See 2 more Smart Citations
“…1 demonstrates the organization of work structure to apprise imbalanced Big Data sets [36]. The work involves the investigational analysis of over sampled data set to improve classification.…”
Section: Architecturementioning
confidence: 99%
“…The nonbinary-class data sets are pre-processed using either traditional method (One versus One (OVO) and One versus All (OVA)) or the suggested LVH method. LVH [36] overcomes the disadvantages of traditional methods improving classification results. This method considers only the highest majority class versus each of the minority class satisfying I.R.…”
Section: Architecturementioning
confidence: 99%
See 1 more Smart Citation
“…Subhash et. al [82] presentan técnicas de sobre-muestreo, todas estas desarrolladas con técnicas de clustering. La primera propuesta se denonima CME (Clustering Minority Examples), la cual sólo involucra las instancias de clases minoritarias para generar instancias sintéticas a través del algoritmo K-Means.…”
Section: Desbalance De Clases En Big Dataunclassified