Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor). This short review highlights recent advances in the characteristics and use of low-molecular-weight glassforming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013).
Construction and performance of dye-sensitized solar cellThe energy-scenario analysis in 2050 plans an increase until 300% of the world energy consumption. Such a need cannot be exclusively satisfied by the fossil fuels, humanity has to turn to renewable energies and notably towards the potentiality of solar energy. Photovoltaics is a promising renewable energy technology that converts sunlight to electricity, with broad potential to contribute significantly to solving the future energy problem that humanity faces. Historically, in 1954, Bell Labs created the first siliconbased solar cells with 6% efficiency [1]. To date, inorganic semiconductor solar cells dominate commercial markets, with crystalline Si having an 80% share; the remaining 20% is mostly thin film solar technology, such as CdTe and CuInGaSe [2]. However, the use of this conventional silicon involves a non-negligible production cost, in particular because of the silicon purification process to reach the solar-grade silicon. This cost strikingly reduces the competitiveness of these silicon cells compared with the traditional sources of energy for the ground applications.Since the last two decades, low-cost solutions have emerged mainly using thin-film solar photovoltaic technologies. Among them, a new type of cell, known as dyesensitized solar cells (DSSC) [3], has been studied to develop low-cost photovoltaic devices. In this type of cell, a e-mail: thanh-tuan.bui@u-cergy.fr b e-mail: fabrice.goubard@u-cergy.fr a light-harvesting material, generally a molecular dye absorbs photons and is photoexcited. The photogenerated electrons and holes from the dye are quickly separated and transferred into two different transporting media (metallic oxide and electrolyte) reducing strongly the electron-hole recombination in the absorber material. Moreover, the device is based on the superposition of active layers whose thicknesses are ten to twenty-folds inferior to that of crystalline silicon wafers. In addition, the requested purity of materials is 10 to 100 times less than for a silicon device.The DSSC is composed of a photo-anode and a photoinert counter electrode (ca...