Endothelium, choroidal epithelium, and arachnoid exclude plasma proteins from most parts of the mammalian central nervous system (CNS). Nerve roots, in contrast, have permeable capillaries and permeable pia‐arachnoid sheaths. Diffusion of plasma proteins into the cerebrospinal fluid is probably prevented by slow bulk flow along a pressure gradient from the subarachnoid space into the veins of the roots. In nerves, the perineurium prevents diffusion of proteins from the epineurium into the endoneurium. Capillaries within fascicles are permeable to macromolecules, though less so than the microvessels of roots and ganglia. Endoneurial vascular permeability is lowest in rats and mice, but even in these species albumin is normally present in the extracellular spaces around the nerve fibers. The so‐called blood‐nerve barrier is not equivalent to the blood‐brain barrier. Capillaries in sensory and sympathetic ganglia are fully permeable to macromolecules, and extravasated protein is in contact with neuronal cell bodies and neurites. An impenetrable perineurium surrounds each ganglion, but serves no obvious purpose when the vessels inside are as permeable as those outside. The enteric nervous system lacks a perineurium, and the neurons in its avascular ganglia and tracts are exposed to extracellular fluid formed by permeable vessels in adjacent tissues of the gut. The reasons for excluding macromolecules from some parts of the nervous system are obscure. Carrier‐mediated transport, which maintains a constant supply of ions, glucose, and other metabolites to cells in the CNS, would be impossible if larger molecules could diffuse freely. Presumably the metabolic needs of ganglia are adequately met by exchange vessels similar to those of nonnervous tissues. Most of the CNS is protected from exogenous toxic substances that bind to plasma proteins. Peripheral neurons and glial cells are damaged by some such substances because of the lack of blood‐tissue barriers. © 1996 Wiley‐Liss, Inc.