Carbon fiber cloth, iron oxides & conducting polymers are effective, abundant materials for supercapacitor electrodes. • This review focused on how iron oxides and conductive polymers affect carbon fiber cloth supercapacitor electrodes. • Previous research found FeCo2O4 and conductive polymers improved carbon fiber cloth supercapacitor electrodes. • The outlook offers insights into improving supercapacitor energy storage using modified carbon fiber cloth electrodes.Carbon fiber cloths (CFCs) are essential materials extensively studied and utilized in numerous applications, including supercapacitors (SCs), batteries, solar cells, and catalysis. CFC is gaining significant research attention as an inexpensive choice for (SC) electrode materials, mainly owing to its peculiar adaptability, which makes it suitable for conveyable or flexible devices. In fact, this characteristic is not easily attainable with other carbon-based matrices. However, bare CFC electrodes face difficulties concerning their capacitive performance because of numerous factors, including markedly little surface space, poor electrochemical efficacy, and limited porousness. In this way, these factors reduce their efficiency as supercapacitor electrodes. To address this, the incorporation of transition metal oxides (TMOs) and conducting polymers (CPs) within the CFC is expected to be crucial in developing the electrochemical performance. This work thoroughly reviews the design and the modification of (CFC) that provide high-performance electrode supercapacitors. It emphasizes implementing effective approaches, such as active material loading, specifically focusing on iron oxides. The SCs have high working potentials and can effectively increase their energy density by iron oxides. According to the researchers' findings, combining CFC and FeCo2O4 has a high electrochemical performance and potential range in aqueous electrolytes. Additionally, this paper outlines and highlights the recent advancements in developing iron oxides-CFC and iron oxides/CP-CFC for supercapacitor applications. It explores their design approaches and electrochemical properties, offering insights into future opportunities for energy storage technologies.