Enhanced PINNs with augmented Lagrangian method and transfer learning for hydrodynamic lubrication analysis
Guangde Zhou,
Menghao Zhan,
Dan Huang
et al.
Abstract:Purpose
By seamlessly integrating physical laws, physics-informed neural networks (PINNs) have flexibly solved a wide variety of partial differential equations (PDEs). However, encoding PDEs and constraints as soft penalties in the loss function can cause gradient imbalances, leading to training and accuracy issues. This study aims to introduce the augmented Lagrangian method (ALM) and transfer learning to address these challenges and enhance the effectiveness of PINNs for hydrodynamic lubrication analysis.
… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.