Preeclampsia (PE) is a major complication of pregnancy with partially elucidated pathophysiology. Placental mitochondrial dysfunction has been increasingly studied as major pathomechanism in both early- and late-onset PE. Impairment of mitochondrial respiration in platelets has recently emerged as a peripheral biomarker that may mirror organ mitochondrial dysfunction in several acute and chronic pathologies. The present study was purported to assess mitochondrial respiratory dys/function in both platelets and placental mitochondria in PE pregnancies. To this aim, a high-resolution respirometry SUIT (Substrate-Uncoupler-Inhibitor-Titration) protocol was adapted to assess complex I (glutamate + malate)- and complex II (succinate)-supported respiration. A decrease in all respiratory parameters (basal, coupled, and maximal uncoupled respiration) in peripheral platelets was found in preeclamptic as compared to healthy pregnancies. At variance, placental mitochondria showed a dichotomous behavior in preeclampsia in relation to the fetal birth weight. PE pregnancies with fetal growth restriction were associated with decreased in coupled respiration (oxidative phosphorylation/OXPHOS capacity) and maximal uncoupled respiration (electron transfer/ET capacity). At variance, these respiratory parameters were increased for both complex I- and II-supported respiration in PE pregnancies with normal weight fetuses. Large randomized controlled clinical studies are needed in order to advance our understanding of mitochondrial adaptive vs. pathological changes in preeclampsia.