Passive Optical Networks (PONs) are telecommunication technologies that use fiber-optic cables to deliver high-speed internet and other communication services to end users. PONs split optical signals from a single fiber into multiple fibers, serving multiple homes or businesses without requiring active electronic components. PONs planning involves designing and optimizing the infrastructure for delivering fiber-optic communications to end users. The main contribution of this paper is the introduction of tailored operators within a genetic algorithm (GA) optimization approach for PONs planning. A three vector and an aggregator vector are devised to account, respectively, for physical and logical connections of the network, facilitating the execution of GA operators. This codification and these operators are versatile and can be applied to any population-based algorithm, not limited to GAs alone. Furthermore, the proposed operators are specifically designed to exploit the unique characteristics of PONs, thereby minimizing the occurrence of unfeasible solutions and accelerating convergence towards an optimal network design. By incorporating these specialized operators, this research aims to enhance the efficiency of PONs planning, ultimately leading to reduced costs and improved network performance.