2023
DOI: 10.11113/oiji2023.11n1.242
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced Recurrent Neural Network (RNN) For Heart Disease Risk Prediction Using Framingham Datasets

Abstract: Heart disease is one of the leading causes of death globally, which takes 17.9 million lives each year. The existing heart disease prediction techniques have a gap that does not consider the smoking attributes from the heart disease data. So, the accuracy is based on the limited number of medical data and the deep learning model. The existing deep learning models which use the Recurrent Neural Network (RNN) for heart disease prediction consume more processing and analysing time, mainly due to the delay of data… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?