Because
of pharmaceutical-emerging contaminants in water resources,
there has been a significant increase in the antibiotic resistance
in bacteria. Therefore, the removal of antibiotics from water resources
is essential. Various antibiotics have been greatly studied using
many different carbon-based materials including graphene-based hydrogels
and aerogels. In this study, carbon aerogels (CAs) were synthesized
from waste paper sources and their adsorption behaviors toward three
antibiotics (hygromycin B, gentamicin, and vancomycin) were investigated,
for which there exist a limited number of reports in the literature.
The prepared CAs were characterized with scanning electron microscopy,
transmission electron microscopy, X-ray photoelectron spectroscopy,
and micro-computerized tomography (μ-CT). According to the μ-CT
results, total porosity and open porosity were calculated as 90.80
and 90.76%, respectively. The surface area and surface-to-volume ratio
were found as 795.15 mm
2
and 16.79 mm
–1
, respectively. The specific surface area of the CAs was found as
104.2 m
2
/g. A detailed adsorption study was carried out
based on different pH values, times, and analyte concentrations. The
adsorption capacities were found as 104.16, 81.30, and 107.52 mg/g
for Hyg B, Gen, and Van, respectively. For all three antibiotics,
the adsorption behavior fits the Langmuir model. The kinetic studies
showed that the system fits the pseudo-second-order kinetic model.
The production of CAs, within the scope of this study, is safe, facile,
and cost-efficient, which makes these green adsorbents a good candidate
for the removal of antibiotics from water resources. This study represents
the first antibiotic adsorption study based on CAs obtained from waste
paper.