Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data
Yuqing Liu,
Yajie Bao,
Peng Cheng
et al.
Abstract:In this study, we introduce an innovative Robot State Estimation (RSE) methodology incorporating a learning-based contact estimation framework for legged robots, which obviates the need for external physical contact sensors. This approach integrates multimodal proprioceptive sensory data, employing a Physics-Informed Neural Network (PINN) in conjunction with an Unscented Kalman Filter (UKF) to enhance the state estimation process. The primary objective of this RSE technique is to calibrate the Inertial Measure… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.