An SMR (small modular reactor) is expected to be able to operate flexibly in conjunction with a high renewable energy penetration grid as a result of improved safety and easy power control compared to large nuclear power plants. SMRs, such as South Korea’s System-integrated Modular Advanced ReacTor (SMART), are designed to use canned motors (CMs) for their reactor coolant pumps (RCPs) to enhance their safety. CMs passively enhance the reactor’s safety by preventing the leakage of radioactive reactor coolant. However, with motor sizes designed to be as small as possible, and the increased air gap of CMs between the stator and rotor, the starting torque may be insufficiently low compared to that of similar-sized induction motors (IMs). Thus, CMs may require variable frequency drives (VFDs) to start. This paper compares the torque characteristics of CMs with those of IMs for SMART’s RCPs. ETAP is then used to perform a motor-starting analysis for CMs activated with and without VFDs. The results are presented and analyzed to find out if VFDs can deal with the CM starting torque issue.