Multicomponent gas mixture diffusion in a microscale confined flow in the transition gas regime at Knudsen numbers (Kn) above 0.1 has potential engineering applications in gas-phase microfluidics. Although the calculation of the diffusion coefficient accounts for the influence of the concentration of other species in a multicomponent gas mixture, the higher rate of gas-wall collision at 0.1 < Kn ≤ 10 introduces additional complications not predicted by conventional calculation methods. Thus, simultaneous measurement of diffusion coefficients for multiple gas species ensures accurate estimation of the diffusion coefficient of a particular species that includes the effect of interactions with other species and wall surface conditions in a multicomponent gas mixture at Kn > 0.1. However, most experimental methods for measuring the diffusion coefficient are not species-specific and therefore cannot directly differentiate between the species diffusing in a gas mixture. Thus, this paper demonstrates a new experiment methodology consisting of a two-bulb diffusion configuration accompanied by a tunable diode laser absorption spectroscopy detection technique for species-specific, in-situ, simultaneous measurement of the effective diffusion coefficient for a CO2-N2O gas mixture in the transition gas regime. The experimental results are compared against direct simulation Monte Carlo calculations and the Bosanquet approximation showing a deviation that has not been reported in the literature before.