Ubiquinone is an essential component of the electron transfer system in both prokaryotes and eukaryotes and is synthesized from chorismate and polyprenyl diphosphate by eight steps. p-Hydroxybenzoate (PHB) polyprenyl diphosphate transferase catalyzes the condensation of PHB and polyprenyl diphosphate in ubiquinone biosynthesis. We isolated the gene (designated ppt1) encoding PHB polyprenyl diphosphate transferase from Schizosaccharomyces pombe and constructed a strain with a disrupted ppt1 gene. This strain could not grow on minimal medium supplemented with glucose. Expression of COQ2 from Saccharomyces cerevisiae in the defective S. pombe strain restored growth and enabled the cells to produce ubiquinone-10, indicating that COQ2 and ppt1 are functional homologs. The ppt1-deficient strain required supplementation with antioxidants, such as cysteine, glutathione, and ␣-tocopherol, to grow on minimal medium. This suggests that ubiquinone can act as an antioxidant, a premise supported by our observation that the ppt1-deficient strain is sensitive to H 2 O 2 and Cu
2؉. Interestingly, we also found that the ppt1-deficient strain produced a significant amount of H 2 S, which suggests that oxidation of sulfide by ubiquinone may be an important pathway for sulfur metabolism in S. pombe. Ppt1-green fluorescent protein fusion proteins localized to the mitochondria, indicating that ubiquinone biosynthesis occurs in the mitochondria in S. pombe. Thus, analysis of the phenotypes of S. pombe strains deficient in ubiquinone production clearly demonstrates that ubiquinone has multiple functions in the cell apart from being an integral component of the electron transfer system. Ubiquinone is known to be an electron transporter in the respiratory chain in prokaryotes and eukaryotes. It varies among organisms in the length of its isoprenoid side chain. For example, Saccharomyces cerevisiae uses ubiquinone-6 (UQ-6), Escherichia coli uses UQ-8, and Schizosaccharomyces pombe uses UQ-10 (9, 16, 37). It has been shown that the type of ubiquinone in organisms is determined by the polyprenyl diphosphate synthase enzyme, which catalyzes the condensation reaction of isopentenyl diphosphate with allylic diphosphate to give a defined length of the isoprenoid (22, 26). When polyprenyl diphosphate synthase genes from other sources were expressed in S. cerevisiae and E. coli, the ubiquinone generated was of the same type as that expressed in the donor organism (22)(23)(24)(25)(26). By this method, we successfully produced various ubiquinone species (UQ-5 to UQ-10) in the S. cerevisiae COQ1 mutant (22), which in turn indicates that p-hydroxybenzoate (PHB) polyprenyl diphosphate transferase, which catalyzes the condensation reaction between the isoprenoid side chain and PHB, has a broad substrate specificity. This is supported by consistent observations showing that purified PHB polyprenyl diphosphate transferases from Pseudomonas putida (12, 40) and E. coli (17) have fairly wide substrate specificities in terms of polyprenols. In contrast, PHB g...