Twitter, a predominant platform for instantaneous communication and idea dissemination, is often exploited by cybercriminals for victim harassment through sexism, racism, hate speech, and trolling using pseudonymous accounts. The propagation of racially charged online discourse poses significant threats to the social, political, and cultural fabric of many societies. Monitoring and prompt eradication of such content from social media, a breeding ground for racist ideologies, are imperative. This study introduces an advanced hybrid forecasting model, utilizing convolutional neural networks (CNNs) and long-short-term memory (LSTM) neural networks, for the efficient and accurate detection of racist and hate speech in English on Twitter. Unlabelled tweets, collated via the Twitter API, formed the basis of the initial investigation. Feature vectors were extracted from these tweets using the TF-IDF (Term Frequency-Inverse Document Frequency) feature extraction technique. This research contrasts the proposed model with existing intelligent classification algorithms in supervised learning. The HateMotiv corpus, a publicly available dataset annotated with types of hate crimes and ideological motivations, was employed, emphasizing Twitter as the primary social media context. A novel aspect of this study is the introduction of a revised artificial hummingbird algorithm (AHA), supplemented by quantum-based optimization (QBO). This quantum-based artificial hummingbird algorithm (QAHA) aims to augment exploration capabilities and reveal potential solution spaces. Employing QAHA resulted in a detection accuracy of approximately 98%, compared to 95.97% without its application. The study's principal contribution lies in the significant advancements achieved in the field of racism and hate speech detection in English through the application of hybrid deep learning methodologies.