Doped graphite-like coating (GLC) has aroused great interest as one of the most promising protective materials in marine applications. However, there is a lack of systematic research on the tribocorrosion and antifouling performance of doped GLC coatings in harsh marine environments. Herein, a multifunctional (Cr, Cu)-GLC coating with combined antifouling and tribocorrosion properties was prepared via a magnetron sputtering method. The experimental results indicate that the resultant coatings changed from a dense structure to a loose columnar structure with the increment of Cr and Cu doping amount. At the same time, the hardness of the coating gradually decreases, but the contact angle between coating and seawater gradually increases. The algae adhesion test reveal that the algae density on the surface of the (Cr, Cu)-GLC coating decreases from about 565 to 70/ mm 2 as the amount of doping increased. However, on the contrary, the friction coefficient of the coating under OCP condition increases from 0.06 to about 0.35. Overall, the mild doped (Cr, Cu)-GLC coating exhibits the best comprehensive properties, combining antifouling and tribocorrosion properties. The corresponded mechanisms are discussed in terms of the coating microstructure, antifouling, and tribocorrosion behavior.