Porous materials possess advantages such as rich pore structures, a large surface area, low relative density, high specific strength, and good breathability. They have broad prospects in the development of a high-performance Triboelectric Nanogenerator (TENG) and self-powered sensing fields. This paper elaborates on the structural forms and construction methods of porous materials in existing TENG, including aerogels, foam sponges, electrospinning, 3D printing, and fabric structures. The research progress of porous materials in improving TENG performance is systematically summarized, with a focus on discussing design strategies of porous structures to enhance the TENG mechanical performance, frictional electrical performance, and environmental tolerance. The current applications of porous-material-based TENG in self-powered sensing such as pressure sensing, health monitoring, and human–machine interactions are introduced, and future development directions and challenges are discussed.