The efficient utilization of lignocellulosic hydrolysates in bioprocesses is impeded by their complex composition and the presence of toxic compounds, such as furan aldehydes, formed during lignocellulose pretreatment. Biological detoxification of these furan aldehydes offers a promising solution to enhance the utilization of lignocellulosic hydrolysates. Acinetobacter baylyi ADP1 is known to metabolize furan aldehydes, yet the complete spectrum of reaction products and dynamics remains unclear. Here, we determined the detoxification metabolites of furfural and 5-hydroxymethylfurfural in A. baylyi ADP1 and studied the kinetics of detoxification. The results indicate that detoxification in A. baylyi ADP1 follows a typical alcohol-aldehyde-acid scheme, with furoic acid and 5-hydroxymethyl-2-furancarboxylic acid as the final products for furfural and 5-hydroxymethylfurfural, respectively. Both end products were found to be less toxic for cells than their unmodified forms. These findings underscore the potential of A. baylyi ADP1 in detoxifying lignocellulosic hydrolysates for bioprocess applications.