To enable an efficient dynamic power and channel allocation (DPCA) for users in the downlink multi-channel non-orthogonal multiple access (MC-NOMA) systems, this paper regards the optimization as the combinatorial problem, and proposes three heuristic solutions, i.e., stochastic algorithm, two-stage greedy randomized adaptive search (GRASP), and two-stage stochastic sample greedy (SSD). Additionally, multiple complicated constraints are taken into consideration according to practical scenarios, for instance, the capacity for per sub-channel, power budget for per sub-channel, power budget for users, minimum data rate, and the priority control during the allocation. The effectiveness of the algorithms is compared by demonstration, and the algorithm performance is compared by simulations. Stochastic solution is useful for the overwhelmed sub-channel resources, i.e., spectrum dense environment with less data rate requirement. With small sub-channel number, i.e., spectrum scarce environment, both GRASP and SSD outperform the stochastic algorithm in terms of bigger data rate (achieve more than six times higher data rate) while having a shorter running time. SSD shows benefits with more channels compared with GRASP due to the low computational complexity (saves 66% running time compared with GRASP while maintaining similar data rate outcomes). With a small sub-channel number, GRASP shows a better performance in terms of the average data rate, variance, and time consumption than SSG.