2022
DOI: 10.5194/hess-2022-187
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Enhanced Watershed Modeling by Incorporating Remotely Sensed Evapotranspiration and Leaf Area Index

Abstract: Abstract. To improve the capacity of watershed modeling, remotely sensed products are frequently used to reduce the uncertainty resulting from data limitations. Although remotely sensed evapotranspiration (RS-ET) products are widely used, vegetation parameters governing spatial and temporal variations in evapotranspiration (ET) are often not constrained by benchmark data. Recently, remotely sensed leaf area index (RS-LAI) products are becoming increasingly available, providing an opportunity to assess and impr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 54 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?