Abstract. During the pre-monsoon season, biomass burning (BB) activities are intensive in southern Asia. Facilitated by westerly circulation, those BB plumes can be transported to the Tibetan Plateau (TP). Black carbon (BC), the main aerosol species in BB emissions, is an important climate warming agent, and its absorbing property strongly depends on its size distribution and mixing state. To elucidate the influence of those transported BB plumes on the TP, a field campaign was conducted on the southeast edge of the TP during the pre-monsoon season. It was found that the transported BB plumes substantially increased the number concentration of the atmospheric BC particles by 13 times, and greatly elevated the number fraction of thickly-coated BC from 52 % up to 91 %. Those transported BC particles had slightly larger core size and much thicker coatings than the background BC particles. However, the coating mass was not evenly distributed on BC particles with different sizes. The smaller BC cores were found to have larger shell/core ratios than the larger cores. Besides, the transported BB plumes strongly affected the vertical variation of the BC's abundance and mixing state, resulting in a higher concentration, larger number fraction and higher aging degree of BC particles in the upper atmosphere. Resulted from both increase of BC loading and aging degree, the transported BB plumes eventually enhanced the total light absorption by 15 times, in which 21 % was contributed by the BC aging and 79 % was contributed from the increase of BC mass. Particularly, the light absorption enhancement induced by the aging process during long-range transport has far exceeded the background aerosol light absorption, which implicates a significant influence of BC aging on climate warming over the TP region.