A digitized analog signal often encounters a high-frequency noisy background which degrades the signal-to-noise ratio (SNR) particularly in case of low signal strength. Despite quite a lot of hardware-and software-based approaches have been reported to date to deal with the noise issue, it is still a challenging task to real-time retrieve the noise-contaminated low-frequency information efficiently without degrading the original bandwidth. In this paper, we report a modified unsharp-masking (UM)-based Graphics Processing Unit (GPU)-accelerated algorithm to efficiently suppress a high-frequency noisy background in a digitized two-dimensional image. The proposed idea works effectively even if noisedensity is high and signal of interest is comparable or weaker than the maximum noise level. While suppressing the noisy background, the original resolution remains least compromised. We first explore the effectiveness of the algorithm by means of simulated images and subsequently extend our demonstration towards a real-world life-science imaging application. Securing a potential for real-time applicability, we implement the algorithm via Compute Unified Device Architecture (CUDA)-acceleration and preserve a <300 µs processing time for a 1000×1000-sized 8-bit data set.