The incidence of acne is on the rise due to unhealthy diet and living habits. Jinhuang ointment (JHO) is a classic prescription composed of 10 kinds of commonly used Chinese herbal medicine, which has been widely used in clinical prevention and treatment of skin inflammatory diseases since ancient times. However, the pharmacological mechanism and target of JHO are not clear. The acne microarray dataset was downloaded from gene expression omnibus database to identify differentially expressed genes (DEG). Immune infiltration was analyzed by CiberSort algorithm. HUB gene was identified by protein-protein interaction network. The gene expression omnibus dataset validates the biomarkers of acne with high diagnostic value. The potential active components and targets of JHO were obtained through Traditional Chinese Medicine Systems Pharmacology database, and the therapeutic targets were obtained by crossing with disease targets. R-packet is used for enrichment analysis. Molecular docking using Auto Dock Tools. A total of 202 DEGs were identified from 12 skin samples in the GSE6475. Immune infiltration analysis showed that there were a large number of macrophages and mast cells in acne skin. Gene set enrichment analysis analysis showed that DEGS was mainly involved in bacterial reaction, inflammatory reaction and so on. Six central genes and gene cluster modules were identified by Cytoscape software. A total of 185 JHO active components and 220 targets were obtained, of which 10 targets were potential targets for JHO in the treatment of acne. Kyoto encyclopedia of genes and genomes enrichment analysis showed that JHO treatment of acne was mainly related to Toll-like receptors, IL-17 and other signal pathways. The results of molecular docking showed that 5 active compounds in JHO had strong binding activity to the core protein receptor. IL-1 β, CXCL8, toll-like receptor 2, CXCL2, LCN2, and secretory phosphoprotein 1 may be potential biomarkers for early diagnosis of acne. JHO active components may regulate skin cell metabolism and inflammatory response and improve cellular immune microenvironment by acting on core targets (CXCL8, ESR1, IL-1 β, MMP1, MMP3, secretory phosphoprotein 1), thus achieving the purpose of treating acne. This is the result of the joint action of multiple targets and multiple pathways. It provides an idea for the development of a new combination of drugs for the treatment of acne.