Selecting suitable promoters to drive gene overexpression can provide significant insight into the development of engineered bacteria. In this study, we analyzed the transcriptome data of Burkholderia pyrrocinia JK-SH007 and identified 54 highly expressed genes. The promoter sequences were located using genome-wide data and scored using the prokaryotic promoter prediction software BPROM to further screen out 18 promoter sequences. We also developed a promoter trap system based on two reporter proteins adapted for promoter optimization in B. pyrrocinia JK-SH007: firefly luciferase encoded by the luciferase gene set (Luc) and trimethoprim (TP)-resistant dihydrofolate reductase (TPr). Ultimately, eight constitutive promoters were successfully inserted into the probe vector and transformed into B. pyrrocinia JK-SH007. The transformants were successfully grown on Tp antibiotic plates, and firefly luciferase expression was determined by measuring the relative light unit (RLU). Five of the promoters (P4, P9, P10, P14, and P19) showed 1.01–2.51-fold higher activity than the control promoter λ phage transcriptional promoter (PRPL). The promoter activity was further validated via qPCR analysis, indicating that promoters P14 and P19 showed stable high transcription levels at all time points. Then, GFP and RFP proteins were overexpressed in JK-SH007. In addition, promoters P14 and P19 were successfully used to drive gene expression in Burkholderia multivorans WS-FJ9 and Escherichia coli S17-1. The two constitutive promoters can be used not only in B. pyrrocinia JK-SH007 itself to gene overexpression but also to expand the scope of application.