The contents of five synaptic membrane antigens (56K, 58K, 62K, 63K, and 64K) were determined in rat cerebral cortex and cerebellum at eight developmental time points: E9, E14, P < 1, P5, P14, P28, P60, and P180 (E, embryonic; P, postnatal). In cerebral cortex, the five antigens showed five different developmental patterns with respect both to specific content (i.e., quantity per unit of membrane) and total content (i.e., quantity per cortex). The 56K, 58K, and 62K polypeptides were first detected at E14, increased slightly to P5, then increased rapidly from P5 to P28 by 14‐, 11‐, and 18‐fold, respectively. From P28 to PI80, the patterns of these antigens showed very large differences. The 63K and 64K antigens were first detected at P14 and P28, respectively. The specific content of 63K antigen continued to increase steadily throughout adult life; in contrast, the specific content of the 64K antigen did not change appreciably. In cerebellum only three antigens (56K, 58K, and 62K) were detected. These three antigens showed different developmental patterns. The 56K polypeptide was first detected at E14; its specific content increased very rapidly to a maximum at P < 1; it then decreased, first slowly, and then more rapidly, disappearing at P60. The 58K polypeptide also was detectable at E14 and increased very rapidly to a maximum at P < 1. It then decreased markedly to P5, followed by an increase, returning almost to its maximum level at P14. It then slowly decreased disappearing at P180. The 62K antigen was first detected at P14 and then it slowly decreased with disappearance at P60. The patterns with respect to total contents per cerebellum were similar for the three antigens, with a maximum at P28. We conclude that the highest increase in the contents of these antigens roughly corresponds to the period of maximal synaptogenesis (P9 to P28) in both regions. Differences among developmental patterns probably reflect changing molecular machinery required for development and functional differentiation of synapses in different brain regions. The fine structure of these patterns suggests that the quantitative measurement of synaptic membrane antigens will be useful for delineating complex processes occurring during synaptogenesis.