The heat exchanger is crucial to all systems and applications that use it. Researchers are primarily focused on improving this component’s thermal conductivity to improve its efficiency. This was achieved by using one or more of the following strategies: inserting tapes with various shapes and numbers, inserting rings of various shapes and spacing between each, and transforming a basic liquid into a nanoliquid by adding nanomaterials with high conductivity and ultra-small particle sizes. Different types of nanomaterials were added in varying concentrations. In earlier studies, it was found that every increase in heat transfer was accompanied by a pressure drop at both ends of the exchanger. The amount of heat transferred and the pressure drop are affected by many factors, such as the torsion tape ratio, the pitch of the ring, and whether the pitch faces the direction of flow or not. Heat transfer rates can also be impacted by factors such as the length and angle of the wings, how many rings and tapes there are, and whether the rings and tapes contain holes or wings. In addition, the Reynolds number, the type, conductivity, and size of nanomaterials, and the base fluid used in the nanofluid affect this. It is possible for the shape of the exchanger tube, as well as varying rates of rise, to introduce such impacts. In this study, the factors, costs, and benefits of using any technology to increase the efficiency of the heat exchanger are reviewed so that the user can make an informed decision about the technology to use.