2022
DOI: 10.1002/er.8269
|View full text |Cite
|
Sign up to set email alerts
|

Enhancement of hydrogen production performance of novel perovskite LaNi 0 . 4 Al 0 . 6 O 3 ‐δ supported on MOF A520

Abstract: Summary Methanol steam reforming (MSR) is a promising method for hydrogen production from renewable energy. The effect of λ‐Al2O3 support derived from metal‐organic frameworks (MOFs) aluminum fumarate (A520) on the performance and stability of LaNi0.4Al0.6O3‐δ for MSR is investigated. Results demonstrate that compared with LaNi0.4Al0.6O3‐δ, LaNi0.4Al0.6O3‐δ/λ‐Al2O3 can achieve complete conversion of methanol and excellent thermal stability due to the higher SBET and strong interaction between the metal compone… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 43 publications
0
5
0
Order By: Relevance
“…The detailed MSR experiments were introduced in our previous paper 14 . The MSR reaction was evaluated by the following equations: Xmethanolbadbreak=()1nmethanoloutnmethanolingoodbreak×0.33em100%$$\begin{equation}{X}_{{\mathrm{methanol}}} = \left( {1 - \frac{{n_{{\mathrm{methanol}}}^{{\mathrm{out}}}}}{{n_{{\mathrm{methanol}}}^{{\mathrm{in}}}}}} \right) \times \ 100\% \end{equation}$$ YnormalH2badbreak=FH2nmethanolin$$\begin{equation}{Y}_{{{\mathrm{H}}}_2} = \frac{{{F}_{{{\mathrm{H}}}_2}}}{{n_{{\mathrm{methanol}}}^{{\mathrm{in}}}}}\end{equation}$$ SnormalH2badbreak=FH2()nmethanolinnmethanolout×0.33em3goodbreak×0.33em100%$$\begin{equation}{S}_{{{\mathrm{H}}}_2} = \frac{{{F}_{{{\mathrm{H}}}_2}}}{{\left( {n_{{\mathrm{methanol}}}^{{\mathrm{in}}} - n_{{\mathrm{methanol}}}^{{\mathrm{out}}}} \right) \times \ 3}} \times \ 100\% \end{equation}$$ Sibadbreak=FiFCO+FCO2+FnormalH2goodbreak×0.33em100%$$\begin{equation}{S}_i = \frac{{{F}_i}}{{{F}_{{\mathrm{CO}}} + {F}_{{\mathrm{CO}}_2} + {F}_{{{\mathrm{H}}}_2}}} \times \ 100\% \end{equation}$$ PnormalH2badbreak=CnormalH2×fproductsMcat×106$$\begin{equation}{P}_{{{\mathrm{H}}}_2} = \frac{{{C}_{{{\mathrm{H}}}_2} \times {f}_{{\mathrm{products}}}}}{{{M}_{{\mathrm{cat}}} \times {{10}}^6}}\end{equation}$$where X methanol (%), …”
Section: Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…The detailed MSR experiments were introduced in our previous paper 14 . The MSR reaction was evaluated by the following equations: Xmethanolbadbreak=()1nmethanoloutnmethanolingoodbreak×0.33em100%$$\begin{equation}{X}_{{\mathrm{methanol}}} = \left( {1 - \frac{{n_{{\mathrm{methanol}}}^{{\mathrm{out}}}}}{{n_{{\mathrm{methanol}}}^{{\mathrm{in}}}}}} \right) \times \ 100\% \end{equation}$$ YnormalH2badbreak=FH2nmethanolin$$\begin{equation}{Y}_{{{\mathrm{H}}}_2} = \frac{{{F}_{{{\mathrm{H}}}_2}}}{{n_{{\mathrm{methanol}}}^{{\mathrm{in}}}}}\end{equation}$$ SnormalH2badbreak=FH2()nmethanolinnmethanolout×0.33em3goodbreak×0.33em100%$$\begin{equation}{S}_{{{\mathrm{H}}}_2} = \frac{{{F}_{{{\mathrm{H}}}_2}}}{{\left( {n_{{\mathrm{methanol}}}^{{\mathrm{in}}} - n_{{\mathrm{methanol}}}^{{\mathrm{out}}}} \right) \times \ 3}} \times \ 100\% \end{equation}$$ Sibadbreak=FiFCO+FCO2+FnormalH2goodbreak×0.33em100%$$\begin{equation}{S}_i = \frac{{{F}_i}}{{{F}_{{\mathrm{CO}}} + {F}_{{\mathrm{CO}}_2} + {F}_{{{\mathrm{H}}}_2}}} \times \ 100\% \end{equation}$$ PnormalH2badbreak=CnormalH2×fproductsMcat×106$$\begin{equation}{P}_{{{\mathrm{H}}}_2} = \frac{{{C}_{{{\mathrm{H}}}_2} \times {f}_{{\mathrm{products}}}}}{{{M}_{{\mathrm{cat}}} \times {{10}}^6}}\end{equation}$$where X methanol (%), …”
Section: Methodsmentioning
confidence: 99%
“…The detailed MSR experiments were introduced in our previous paper. 14 The MSR reaction was evaluated by the following equations:…”
Section: Msr Experimentsmentioning
confidence: 99%
See 1 more Smart Citation
“…The samples were prepared by sol–gel method 17 . The metal salt precursors are Cu(NO 3 ) 2 ·3H 2 O, Ce(NO 3 ) 3 ·6H 2 O, and Y(NO 3 ) 3 ·6H 2 O, all of which are analytically pure.…”
Section: Methodsmentioning
confidence: 99%
“…The samples were prepared by sol-gel method. 17 The metal salt precursors are Cu(NO 3 ) 2 ⋅3H 2 O, Ce(NO 3 ) 3 ⋅6H 2 O, and Y(NO 3 ) 3 ⋅6H 2 O, all of which are analytically pure. In addition, ethylene diamine tetraacetic acid (EDTA) and citric acid are selected as complexing agents.…”
Section: Preparation Of the Catalystsmentioning
confidence: 99%