We have investigated the thermal quenching behavior of photoluminescence (PL) from β-FeSi2 (β-NC) embedded in Si (β-NC/Si) and SiO2 (β-NC/SiO2). The β-NC/SiO2 composite was prepared directly from the β-NC/Si composite by selective oxidation. In the β-NC/SiO2 composite, we found an increase in the critical temperature, which indicates the relaxation of thermal quenching for PL intensity. Furthermore, we observed a clear PL spectrum including the intrinsic A band PL at 300 K; however, the PL intensity was extremely low. Rutherford backscattering spectrometry (RBS) and photocarrier injection PL (PCI-PL) measurements revealed the reason why the β-NC/Si composites were maintained after oxidation. We discussed the thermal quenching behavior of both samples on the basis of a thermal activation model of holes from valence band wells at the heterointerface and confirmed that this model was appropriate for understanding the thermal quenching of these composites.