2019
DOI: 10.1063/1.5066586
|View full text |Cite
|
Sign up to set email alerts
|

Enhancement of resistive switching performance by introducing a thin non-stoichiometric CeO2-x switching layer in TiO2-based resistive random access memory

Abstract: By introducing a thin non-stoichiometric CeO2-x switching layer between the high oxygen affinity metal TaN top electrode and the TiO2 layer in a TaN/CeO2-x/TiO2/Pt bilayer (BL) device, it is possible to enhance the endurance characteristics and overcome the reliability issue. Compared with a single layer device, a BL device significantly enhances the number of direct current overswitching cycles to >1.2 × 104, non-destructive retention (>104 s), and switching uniformity. A TaON interface layer is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 43 publications
(12 citation statements)
references
References 35 publications
0
10
0
2
Order By: Relevance
“…Such a mechanism is realized in different oxides (TiO 2 , SiO 2 , HfO 2 , etc. ), [11][12][13][14][15] with filaments composed of oxygen vacancies, or in dielectrics (SiO 2 , organic materials), [16][17][18] with metal bridges formed by cations. In this case, the variability of parameters, both device to device and cycle to cycle, could be significant because of the random character of the filament (bridge) formation process.…”
Section: Introductionmentioning
confidence: 99%
“…Such a mechanism is realized in different oxides (TiO 2 , SiO 2 , HfO 2 , etc. ), [11][12][13][14][15] with filaments composed of oxygen vacancies, or in dielectrics (SiO 2 , organic materials), [16][17][18] with metal bridges formed by cations. In this case, the variability of parameters, both device to device and cycle to cycle, could be significant because of the random character of the filament (bridge) formation process.…”
Section: Introductionmentioning
confidence: 99%
“…The temporal uniformity of the pso-memristor is drastically enhanced compared to those of amorphous oxide-based devices and those even after structure modification to improve switching uniformity by inserting additional oxide layer, local field enhancement by nanoparticle embedding, or filament confinement by grain boundary engineering. [11,12,14,[36][37][38][39] Since spatial variation mainly stems from the random electroforming process, the electroforming-free memristors are expected to have improved spatial uniformity. Two 4 × 4 cross-bar arrays were fabricated (see Figure S5, Supporting Information) and the set voltages of all 32 devices are plotted in Figure 3e (see Figure S6 (Supporting Information) for the method to define the set voltages of the cross-bar arrays).…”
Section: Resultsmentioning
confidence: 99%
“…Большинство мемристивных устройств на данный момент изготавливается с использованием неорганических материалов (TiO 2 , ZnO, HfO 2 , WO 3 , SiO 2 и др.) [6][7][8][9]. Наряду с неорганическими мемристорами все больший интерес начинают вызывать мемристоры на основе органических материалов, так как они не уступают неорганическим по основным параметрам [10], но при этом обладают рядом преимуществ, например относительно малой стоимостью, простотой изготовления, гибкостью и биосовместимостью [11,12].…”
Section: поступило в редакцию 9 октября 2019 г в окончательной редакunclassified