The last few years have seen tremendous advances in CRISPR-mediated genome editing. Great efforts have been made to improve the efficiency, specificity, editing window, and targeting scope of CRISPR/Cas9-mediated transgene knock-in and gene correction. In this article, we comprehensively review recent progress in CRISPR-based strategies for targeted transgene knock-in and gene correction in both homology-dependent and homology-independent approaches. We cover homology-directed repair (HDR), synthesis-dependent strand annealing (SDSA), microhomology-mediated end joining (MMEJ), and homology-mediated end joining (HMEJ) pathways for a homology-dependent strategy and alternative DNA repair pathways such as non-homologous end joining (NHEJ), base excision repair (BER), and mismatch repair (MMR) for a homology-independent strategy. We also discuss base editing and prime editing that enable direct conversion of nucleotides in genomic DNA without damaging the DNA or requiring donor DNA. Notably, we illustrate the key mechanisms and design principles for each strategy, providing design guidelines for multiplex, flexible, scarless gene insertion and replacement at high efficiency and specificity. In addition, we highlight next-generation base editors that provide higher editing efficiency, fewer undesired by-products, and broader targeting scope.