In this paper a deflagrative pressure gain combustor employing rotary valves is introduced that can reduce combustor length by allowing the combustion process to take place in the radial direction rather than in the axial direction with sufficient resident time. The engine is described in some detail with respect to geometry, components, and potential benefits. A demonstrator rig was designed, built, and tested for concept verification. A series of initial tests sweeping equivalence ratio from 0.4 to 0.8 using ethylene as fuel and mass flows from 75 g/s to 150 g/s is presented. The turbine rotor was driven to above 200 RPM with just four of the combustor passages operating. The initial results indicate the feasibility of the rotary valve radial engine concept and identified key challenges associated with the concept. Further studies are needed address existing challenges and to promote the engine development.