The light weight and high strength of magnesium alloys have garnered significant attention, rendering them suitable for various applications across industries. Nevertheless, to meet industrial requirements, the mechanical properties must be improved. This investigation explores the potential of graphene addition to enhance the mechanical properties of AM60B magnesium alloy. Tests were conducted on samples with different weight percentages (wt.%) of graphene (0 wt.%, 0.1 wt.%, and 0.2 wt.%) using stir casting. The elongation and tensile strength of the composite materials were also assessed. The phase composition, particle size, and agglomeration phenomena were analyzed using characterization techniques such as X-ray diffraction, optical microscopy, and SEM-EDS. The yield strength of the magnesium alloy was enhanced by approximately 13.4% with the incorporation of 0.1 wt.% graphene compared to the alloy without graphene. Additionally, an 8.8% increase in elongation was observed. However, the alloy tensile properties were reduced by adding 0.2 wt.% graphene. The tensile fractography results indicated a higher probability of brittle fracture with 0.2 wt.% graphene. Furthermore, regression analysis employing machine learning techniques revealed the potential of predicting the stress–strain curve of composite materials.