Enhancements of discretization approaches for non-convex mixed-integer quadratically constrained quadratic programming: Part I
Benjamin Beach,
Robert Burlacu,
Andreas Bärmann
et al.
Abstract:We study mixed-integer programming (MIP) relaxation techniques for the solution of non-convex mixed-integer quadratically constrained quadratic programs (MIQCQPs). We present MIP relaxation methods for non-convex continuous variable products. In this paper, we consider MIP relaxations based on separable reformulation. The main focus is the introduction of the enhanced separable MIP relaxation for non-convex quadratic products of the form $$z=xy$$
z
=
… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.