In the perspective of alleviating the inherent trade-off between the spatial and angular resolutions of light field (LF) images, much research has been carried out to increase the angular resolution of LFs by synthesizing intermediate views. Since the height of each EPI is equal to the angular resolution of LF, we tackle the view synthesis problem as doubling the height of each EPI in LF. To efficiently stretch the EPI while not consuming too much computing time, we propose to first segment the EPI into superpixels and then adaptively interpolate each superpixel separately. The test results on the synthetic and real-scene LF datasets show that our scheme can achieve average Peak signal-to-noise ratio (PSNR) / structural similarity index measure (SSIM) around 30.58dB / 0.9131 and 32.28dB / 0.9510, by taking computing time of 5.80 minute and 1.83 minute for HCI and EPFL dataset, respectively.