The development of temperature-sensitive sensors upgraded by poly(N-isopropylacrylamide) (PNIPAM) represents a significant stride in enhancing performance and tailoring thermoresponsiveness. In this study, an array of temperature-responsive electrochemical sensors modified with different PNIPAM-based copolymer films were fabricated via a “coating and grafting” two-step film-forming technique on screen-printed platinum electrodes (SPPEs). Chemical composition, grafting density, equilibrium swelling, surface wettability, surface morphology, amperometric response, cyclic voltammograms, and other properties were evaluated for the modified SPPEs, successively. The modified SPPEs exhibited significant changes in their properties depending on the preparation concentrations, but all the resulting sensors showed excellent stability and repeatability. The modified sensors demonstrated favorable sensitivity to hydrogen peroxide and L-ascorbic acid. Furthermore, notable temperature-induced variations in electrical signals were observed as the electrodes were subjected to temperature fluctuations above and below the lower critical solution temperature (LCST). The ability to reversibly respond to temperature variations, coupled with the tunability of PNIPAM’s thermoresponsive properties, opens up new possibilities for the design of sensors that can adapt to changing environments and optimize their performance accordingly.