Enhancing Autoencoder-Based Machine Learning through the Use of Process Control Gain and Relative Gain Arrays as Cost Functions
Rafael H. Martello,
Jorge O. Trierweiler,
Lucas Maciel
et al.
Abstract:Autoencoders are neural networks utilized for unsupervised learning and reconstructing input data, making them helpful in for analyzing industrial process data. To enhance their effectiveness, we introduce two cost functions based on the Gain Matrix and Relative Gain Array (RGA) concepts, referred to in this paper as Gain Autoencoder (GAE) and Relative Gain Autoencoder (RGAE). These cost functions aid in reducing dimensionality and improving the model's performance in industrial settings. This article delves i… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.