Enhancing Biometric Security with Bimodal Deep Learning and Feature-level Fusion of Facial and Voice Data
Khaled Merit,
Mohammed Beladgham
Abstract:Recent research in biometric technologies underscores the benefits of multimodal systems that use multiple traits to enhance security by complicating the replication of samples from genuine users. To address this, we present a bimodal deep learning network (BDLN or BNet) that integrates facial and voice modalities. Voice features are extracted using the SincNet architecture, and facial image features are obtained from convolutional layers. Proposed network fuses these feature vectors using either averaging or … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.