2024
DOI: 10.54254/2755-2721/67/2024ma0070
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing capabilities of generative models through VAE-GAN integration: A review

Dongting Cai

Abstract: Our review explores the integration of Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs), which are pivotal in the realm of generative models. VAEs are renowned for their robust probabilistic foundations and capacity for complex data representation learning, while GANs are celebrated for generating high-fidelity images. Despite their strengths, both models have limitations: VAEs often produce less sharp outputs, and GANs face challenges with training stability. The hybrid VAE-GAN model… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?