Enhancing Conversions and Lead Scoring in Online Professional Education
Wen Yang Yim,
Khai Wah Khaw,
Shiuh Tong Lim
et al.
Abstract:This study seeks to enhance lead conversion for online professional education providers by using supervised machine learning algorithms for lead conversion targeting and lead scoring, including Logistic Regression, K-Nearest Neighbors, Support Vector Machines, Naïve Bayes, Random Forst, Bagging, Boosting, and Stacking. A lead dataset was used to train and test the machine-learning models. The Recursive Feature Elimination (RFE) is used to establish a precise lead profile. The performance of the trained lead co… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.