2023
DOI: 10.3390/s23167096
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing Cross-Lingual Entity Alignment in Knowledge Graphs through Structure Similarity Rearrangement

Abstract: Cross-lingual entity alignment in knowledge graphs is a crucial task in knowledge fusion. This task involves learning low-dimensional embeddings for nodes in different knowledge graphs and identifying equivalent entities across them by measuring the distances between their representation vectors. Existing alignment models use neural network modules and the nearest neighbors algorithm to find suitable entity pairs. However, these models often ignore the importance of local structural features of entities during… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 37 publications
0
0
0
Order By: Relevance