2024
DOI: 10.1007/s00419-024-02634-1
|View full text |Cite
|
Sign up to set email alerts
|

Enhancing damage prediction in bulk metal forming through machine learning-assisted parameter identification

Jan Gerlach,
Robin Schulte,
Alexander Schowtjak
et al.

Abstract: The open-source parameter identification tool ADAPT (A diversely applicable parameter identification Tool) is integrated with a machine learning-based approach for start value prediction in order to calibrate a Gurson–Tvergaard–Needleman (GTN) and a Lemaitre damage model. As representative example case-hardened steel 16MnCrS5 is elaborated. An artificial neural network (ANN) is initially trained by using load–displacement curves derived from simulations of a boundary value problem—instead of using data generat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 45 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?