Enhancing decision-making with linear diophantine multi-fuzzy set: application of novel information measures in medical and engineering fields
Jeevitha Kannan,
Vimala Jayakumar,
Nasreen Kausar
et al.
Abstract:This study offers a comprehensive analysis of novel information for linear diophantine multi-fuzzy sets and illustrates its applications in practical scenarios. We introduce innovative similarity metrics tailored for linear diophantine multi-fuzzy sets, including Cosine similarity, Jaccard similarity, and Exponential similarity. Additionally, we propose Entropy, Inclusion, and Distance measures, providing a robust theoretical foundation supported by developed theorems that explain the interactions between thes… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.